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Abstract

A hybrid CFD (Computational Fluid Dynamics) method combining a potential-based
Vorticity Embedding method with an Euler solver is presented and validated for
isolated rotor flows. First, a formulation of Vorticity Embedding is developed and
validated for Cartesian grids. This formulation is utilized together with simple lifting
lines to represent an isolated rotor in hover. The results for an isolated rotor are then
compared with experiment. The method is then hybridized by coupling the Vorticity
Embedding grid containing the rotor to a region containing a ground plane where
a standard finite difference Euler solver is utilized. Initial results from this hybrid
scheme are presented including a demonstration of the code’s potential to calculate
the ground vortex roll-up generated by a rotor in ground effect in the presence of a

cross-wind.
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Chapter 1

Introduction

1.1 Rotor Analysis in Ground Effect

The wake shed by a helicopter rotor is one of the most important factors in determin-
ing rotor performance. Unfortunately, the rotor wake is an extremely complicated
aerodynamic feature. The saying that “a single helicopter blade faces more aero-
dynamic pfoblems in one revolution than a fixed wing aircraft meets in its entire
lifetime” {1] is particularly true when the blade in questién is in proximity to the
ground, that is, when the rotor is “in ground effect”. In ground effect, the rotor wake
becomes more complicaLted. A low advance ratio (ratio of free-stream or cross-wind to
rotor tip speed) makes the rotor wake problem more complicated still while retaining
' the first-order impact of wake geometry on p-er'forr'na.nce.v Under these conditions,
“the free-stream and/or cross-stream interacts with the already complex rotor wake to
prodﬁce a powerful ground vortex. This ground vortex (visualized in Figure 1.1 [6]

R -using helium bubbles) wraps around the h(f,licc‘)_pter'.and. causes an array of problems

“including loss of yaw contfol'._-In-othér._ cases, the"g‘réliind;iidftex can interact negative- -. -




1.1. ROTOR ANALYSIS IN GROUND EFFECT

Figure 1.1: Ground Vortex Impinging on Empennage

ly with the main rotor or with other aircraft in formation. Also, the helicopter wake
can interact with ground operations or ship deck operations.

In general, the computation of rotors in near-ground operation requires the ability
to predict both the wake structures shed by the blades and the larger vortex structures
along the ground. It is the purpose of this paper to investigate the effectiveness of
the Vorticity Embedding method coupled with a conventional Euler solver to predict
the wake and ground vortex structures mentioned above. An existing but previously

incomplete and undocurented code (called HELIX-IIT) will be used for this purpose.




1.2. 'REVIEW OF EXISTING METHODS

Figure 1.2: Smoke Visualization of Rotor Wake (taken from [11])

1.2 Review of Existing Methods

The flow field created by a rotor is characterized by thin regions of vorticity in an
otherwise potential flow. The smoke visualization of a rotor wake in Figure 1.2 which
is diagrammed in Figure 1.3.cléarly shows the velocity discontinuity caused by the
thin region of vérticity which comprises the wake. It also clearly shows the powerful
tip vortices caused by the roll-up of the rotor wake. Many methods have been devised
to treat the problems which are associated with calculating flows containing regions

of compact vorticity.

1.2.1 Vortex Methods

Vortex methods treat the wake as a sheet of Lagrangla.n vortex filaments using the

' Blot-Sa.va.tt law to calculate the veloc1ty mduced by the ﬁlaments Determmmg ve-




1.2. REVIEW OF EXISTING METHODS
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Figure 1.3: Diagram of Smoke Visualization (adapted from [11))

locity at a point requires calculation of the influence of all vortex filaments on that
point. Vortex methods have been used in conjunction with other methods providing

inflow values to potential, Euler or Navier-Stokes solvers.

1.2.2 Euler and Navier-Stokes Fixed Grid Methods

Conceptually, Euler and Navier-Stokes solvers greatly simplify the process of calcu-
lating a rotor flow. They can predict; both the load on the rotor and the associated
wake in a uniform manner free-of artificial constructs such as wake markers. In
actuality, the efforts necessary to achieve adequate grid resolution near the wake
(adaptive grid refinement, overset and/or unstructured grids) tend to complicate this
approach. The wake has been found e_)_cperiniental_ly to be as thin as 5% of the chord.

Supposing it requires 12 points éqfo_s’s_ the thinnest part of the wak_e'to- adequately




1.2. REVIEW OF EXISTING METHODS

resolve the wake and it is desired to maintain this resolution down to one radius
below the plane of a rotor with blade aspect ratio of 15, then this grid will require
2% * (15 * 5%)3 = 2.9 % 10! points. And even then the “solution” obtained on this
grid will be only a model of the Navier-Stokes equations for the vortex core region
which can be turbulent with even smaller length scales. At present, a rotor wake
computation of 10 million (1.0 * 107) points is considered very large and requires tens
or even hundreds of hours on expensive, specialized supercomputers. Therefore, the
usefulness of Euler and Navier-Stokes solvers is limited to regions in the flow field ei-
ther very near the blade where adequate grid resolution can be achieved or in regions
far enough removed from thé rotor that the rotor wake no longer has a first-order
impact on the.blade loadings. The former justification was used in employing an
overset Navier-Stokes solver in the HELIX-I code to determine the flow near the rotor
blade [12]. The latter justification is used in employing an Euler solver to determine

flow near the ground in the HELIX-III code.

1.2.3 Point-Lattice Methods
1.2.3.1 Cloud-in-Cell

The cloud-in-cell or vortex-in-cell method utilizes a Lagrangian wake convected by
its own induced velocity which is calculated on an Eulerian grid. By calculating
the wake-induced Velocitﬁr on an Eulel_'ian grid and interpolating the velocities back
to the wake in order to convect it, an artificial viscosity is inherently introduced
- by truncation error which has the benefit of eliminating the singularity present in

Biot-Savart methods._,_This isa two dimensional method. [13]




1.3. CURRENT METHOD

1.2.3.2 Vorticity Embedding

Vorticity Embedding (VE) is a Lagrangian technique for modeling the wake created
by a lifting body. Like other Lagrangian methods it avoids the numerical diffusion
associated with standard Eulerian methods. VE satisfies the Euler equations (in-
tegrated though the wake sheet) rather than msaﬁisfying the Biot-Savart law, so its
usefulness is not limited to incompressible flow like traditional Lagrangian methods.
Further, calculation of velocity at a point does not require calculating the influence of
every filament/point/blob on that point. Therefore, it is computationally inexpensive

compared to more traditional vortex methods. [19]

1.3 Current Method

This particular method utilizes a lifting line together with a VE solver to model the
rotor wake. This solver is then coupled to a fractional step (FS) solver to model the
interaction of the rotor wake with a ground plane.

HELIX-III was originally Aconceived by Prof. Steinhoff and implemented - without
the lifting line - by Dr. M. Moulton and Dr. S. Babu. It was passed on to the author
after Dr. Babu’s departure from UTSL. The code required a couple of corrections and
implementation of the lifting line. The required corrections and the addition of the

lifting line are the goals of this work.




Chapter 2

Numerical Method

2.1 Overview

The computational region is spanned by two Cartesian Eulerian.grids which have
one or more coincident planes (perpendicular to the z-axis) as shown in Figure 2.1.
In the “upper” or “rotor” region, we utilize a lifting line to represent the rotor and
Vorticity Embedding to model the wake while in the “lower” or “ground” region, a
conventional fractional step Euler solver is employed. Hereafter, these regions will be
referred to as the Vorticity Embedding or VE region and the fractional step or FS
region, respectively. The overall solution procedure for the HELIX-III is outlined in
Algorithm 1.

The previoﬁsly xhentiongd HELIX-I code has been used exf.ensiveiy for the com-
.putation of hover flows where a blade-fixed (rotating) cylindrical H-grid proved to
be most convenient. In a.blade-fixed grid (and neglecting the fuselage), hover ﬁdw
_ is steady and Blade:to;l;lade periodic making it possible to computev the__én(;i;'ety of '

the desired ,ﬁdw‘-'ﬁeidlbaéﬁéd on a single blade. In forward ﬁi_ght_or in the presenceof o

7




2.2. LIFTING LINE ROTOR REPRESENTATION

Algorithm 1 HELIX-11I Solution Procedure
1. Advance the rotor blade (lifting line) by Ag (usually one or two degrees).

2. Perform the lifting line calculation to get the circulation (or enforce a fixed
circulation) to impose on the new wake markers which are added at the new
rotor position.

3. Calculate the velocities in the VE region using the velocity of the FS region
from the previous time step to calculate the flux BC for the interface boundary.

4. Calculate the velocities in the FS region using the velocity from the VE region
for the velocity BC at the interface.

5. Repeat the above steps until sufficiently converged

a cross-wind, such simplifications are no longer possible. Therefore, HELIX-III has
been devised based on a uniform Cartesian grid. This erases the distinction between
hover and forward flight. Further, it allows HELIX-III to be coupled to another solver

in order to better resolve flow near the ground.

2.2 Lifting Line Rotor Representation

Since the grid is non-rotating, the rotor must move through the grid. Typically,
this is accomplished with some type of oversetting wherein an inner blade-fixed grid
communicates with the Cartesian grid by interpolation. At present, this type of
method is not employed because only the general flow field, especially near the ground,
is required. Therefore, a lifting line rotor represent‘ation is.l‘xtilized. in this approach,
the rotor blade is represented as a line vortex and requires no special gﬁdding. The

strength of the sheet is the local rotor circulation. This is obtained by computing a

* local rotor inflow angle (requiring an- interpolation from the Cartesian velocity field




2.2. LIFTING LINE ROTOR REPRESENTATION

Lifting-line rotor
representation

Lagrangian
wake markers_|

.o
CRCRR SRR S,

L e S e

et |
ek ""&7,"'&' %%

G of

=

.....
.
LI P

VE Region

aga2i
§e -t

T
.....
.....
-----
.......
-----

FS Region

Flow-through or solid boundary
Flux-transfer
interface

Figure 2.1: HELIX-11I Overview

to the lifting line) and assuming a local, ideal two dimensional flow to obtain the

circulation.

The local angle of attack is the sum of the collective pitch and the inflow angle

)

where w,, is the downward component of the local free-stream velocity which may be

which is calculated as folldwé:

Woo

=8

R

o; = —arctan ( (2.1)

adjusted to include a downward contribution from the bound vortex associated with

the leading edge of the wake sheet. That is,

Woo = W + 2.2)




2.2. LIFTING LINE ROTOR REPRESENTATION
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Figure 2.2: Lifting Line

where d is the distance to the leading edge of the wake sheet. This requires a tri-linear
interpolation of the downward component of velocity, w;, at a point one chord ahead
of the leading edge of the wake sheet. The sectional lift coefficient is then computed
according to thin airfoil theory,

ce =27 (2.3)

where

a = 9,75 + 4. (24)

The circulation associated with a marker originating at the leading edge of the wake

sheet is

r= %5 (-I%Q) . (2.5)

* This lifting line approximation provides reasonable results to within one chord of the

blade tip where the two dimensional assumption is no longer valid. Therefore, within

one chord of the tip, the circulation is continued quadratically tp'z'ero.

10




2.3. VORTICITY EMBEDDING REGION

2.3 Vorticity Embedding Region

In the Vorticity Embedding region, the flow is determined by the rotor wake. It is
necessary to adequately resolve the rotor wake for at least one blade passage, as there
is a pronounced effect on the blade loading. Therefore, Vorticity Embedding is used
in this region. Vorticity Embedding is a computationally efficient way of embedding a
thin layer of vorticity (the wake) around Lagrangian markers in an otherwise potential
flow. This method is the basis of the HELIX-I code u;hich has been used successfully
for the prediction of hover performance of isolated rotors (15],{16]. The La;grangian
nature of the wake convection eliminates the need for extremely high grid densities
(to prevent diffusion) and allows thin regions of high vorticity to be convected over
distances large enough to accurately model several revolutions of the rotor wake.

The overall solution procedure for the VE region is found in Algorithm 2.

2.3.1 Governing Equations

Typical rotor tip speeds place the embedding region in the compressible flow regime.
However, for simplicity and to permit the use of available direct solvers, the present
implementation is incompressible. Therefore, the incompressible version of the con-
tinuity equation,

V-q=0, (2.7)

s satisfied in the VE region. The circulation introduced into the flow by the lifting

lines is preserved according to Kelvin's theorem:




2.3. VORTICITY EMBEDDING REGION

Algorithm 2 Vorticity Embedding

1. Calculate the Clebsch functions on the grid nodes within the spreading distance
of the Lagrangian-marker-wake-sheet.

(a) Calculate the sheet strength (circulation), I'.
(b) Calculate the shape function, A.

2. Calculate the rotational component of velocity, q¥, according to equation 2.12

3. Calculate the irrotational component of the velocity field, V.

. (a) Calculate ¢ such that
Vip=-V-q' (2.6)

(b) The irrotational component is V¢.
Therefore, velocity (2.11) satisfies the continuity equation (2.7).

(c) Set q* =q*+ V¢

(d) Extrapolate new boundary conditions

(e) Repeat (a)-(d) until q° is sufficiently divergence-free.
Then q = q°.

4. Stop if sufficiently converged; otherwise, convect the wake markers using the
two-step Runge-Kutta method and start over.

12




2.3. VORTICITY EMBEDDING REGION

The circulation around a material loop changes only at the lifting line, as that loop

is convected through the VE region.

2.3.2 Vorticity Embedding
2.3.2.1 Complex-Lamellar Velocity Decomposition

It is typical of velocity decompositions to represent the velocity as the sum of a

vortical component and the gradient of a scalar, that is,

q=q"+ V. (2.9)

Because the curl of the gradient of a scalar is zero, the vorticity is entirely contained

within the the vortical component, so
w=Vxq=Vxdqg’. (2.10)

One such decomposition is the complex-lamellar’»? decomposition. Here, the velocity

decomposition takes the following form:

q=CVA+ V¢ (2.11)

1q¥ is a complex-lamellar flow field if it can be divided by an integrating function, T, to produce
a potential or “lamellar” flow [14]:

qQ" _
T = 2
2Equivalently, a complex—lamellar vector field is any vector field which is perpendxcula.r to its own

curl [14], that is .
q*-(Vxq')=0




2.3. VORTICITY EMBEDDING REGION

where the three variables (I',V,A) are sometimes called Clebsch variables. The
complex-lamellar decomposition is very interesting in that the Clebsch variables can

be chosen such that q¥ = 0 when w = 0 [14].

2.3.2.2 The Clebsch Variables of Vorticity Embedding

Vorticity Embedding is based on a particular complex-lamellar velocity decomposi-
tion. The Clebsch variables are chosen such that the vortical component, g7, is only
non-zero in a. thin region surrounding thé Lagrangian wake markers. Said vortical
component is defined as

q’'=-T'VaA (2.12)

where T is the circulation and X is an as yet arbitrary shape function. For compu-
tational simplicity, q” is chosen such that it is perpendicular to the wake sheet [19].

Therefore the circulation is

= / Q- di (2.13)

where the integration is performed normal to the sheet. In terms of a traditional
potential flow solver, the integral of q” must equal the local potential jump, T, across
the sheet of shed vorticity. For convenience, X is chosen to be a half-sine wave whose
zero-crossing is at the sheet:

A= %sin ————) (2.14)

where S;, is the signed normal distance from the sheet and @ is the spreading param-

eter which determines the number-of cells over which the vortex sheet is spread or-

“smeared”.




2.3. VORTICITY EMBEDDING REGION

2.3.2.3 Spreading

2.3.2.3.1 Computational vs. Physical Spreading In its original formulation,
VE utilized physical spreading. The Clebsch variables were calculated within a given
physical distance of the wake sheet. Using physical spreading, a search is performed
from each Eulerian grid point to find the Lagrangian wake markers that fall within
the physical spreading distance. The Clebsch variables on that Eulerian grid point
are then calculated based on a weighted average of the contributions from all of the
markers that fall within the physical spreading distance of the grid point. The use of
computational spreading was previously proposed [17] and implemented [12] wherein
the Clebsch variables were calculated in computational space rather than physical
space. Now, @ represents a computational distance, or number of cells, from the sheet
over which the Clebsch variables are calculated. Additionally, instead of iterating
over Eulerian grid points, the procedure was changed to iterate over the Lagrangian

wake markers (a 2-D structure rather than a 3-D structure).

2.3.2.3.2 Weighted Averaging Because each Eulerian grid point can be influ-
enced by multiple wake markers, I and S, (for the calculation of A per 2.14) must be
be treated as a weighted average from all wake markers that are within the selected

region of influence. Therefore,

| ',,,,;—3[ (Zr“afﬂ.,k)} (2.15)
, ) _

i.J.k

w»p—
‘ 7 A ~t_ .7,k

15

Z@W”%'A‘mdf:




2.3. VORTICITY EMBEDDING REGION

where i, J, k are the Eulerian grid indices, £ is the wake marker index, o; ik 18 the ratio
of the difference between the spreading distance and the distance to the grid point to

the spreading distance squared defined by

b = x|

a2

(4 —
Cfi,j’k =max 0,1

(2.17)

where x; j« is the position of the grid point and x¢ is the position of the wake marker

and A is the sum of these ratios,

A= ; (Z O ik ) (2.18)

Lk

The current numerical procedure for normalization (multiplying I;;x and (Sq)ijx
by i) requires us to iterate over all the grid points. This defeats the intentions
of the change in the Clebsch procedure from iterating over grid points to iterating
over wake markers. The Clebsch calculation again necessitates iterating over a 3-D
structure rather than just over a 2-D structure (the wake sheet) as might be expected.
Further, it has unfortunate consequences when we increase the number of wake sheets

to eliminate unintended averaging.

2.3.2.4 Poisson Equation

Given the rotational component of velocity, q¥, we can now calculate the irrotational

component of the velocity, V. We require that V¢ exactly cancel out the divergence

16




2.3. VORTICITY EMBEDDING REGION

created by the rotational component of velocity. Therefore,
V-V¢=V¢=-V.q" (2.19)

providing us with a Poisson equation to solve for the potential ¢. The regular grid
allows us to use a fast direct Poisson solver from FISHPACK [see Appendix C]. The
only other things necessary to calculate the irrotational velocity component are the

appropriate boundary conditions.

2.3.2.5 Boundary Conditions

In the simplest case: an isolated rotor in hover without coupling to a ground region
(the FS region); Dirichlet boundary conditions are employed. The flow is assumed to
be normal to the boundary surface. This is accomplished by using a non-homogeneous

lower boundary condition.

6= / qvdr (2.20)

where ¢! is the radial component of q’and the integration is performed radially, in
from the outer edge of the wake region.

The aforementioned non-homogeneous lower boundary condition is no longer ap-
propriate given the presence of a ground (FS) region to which it is coupled. Instead,
the flux across the boundary is calculated, based on the velocity from the cpincident
plane of the FS region (from the previous time step) and the vortical velocity from
the wake sheet according to the following equation: |

_g—i=(q’£§‘fq'(f€)'ﬁ’ S | (221)

17




2.3. VORTICITY EMBEDDING REGION

which follows from the definition of the total velocity in the VE region as the sum
of an irrotational and rotational velocity. In this case, the irrotational component is
calculated from the total velocity (extrapolated from the interior of the FS region)
and the rotational component from the VE region. For all of the other boundaries, a
homogeneous Dirichlet conditions are initially imposed followed by repeated solution
of the Poisson equation with Dirichlet boundary conditions extrapolated from the

previous solution until convergence is reached.

2.3.2.6 Staggered Computational Grid

A staggered 128x128x32 regular Cartesian grid is used. The scalar variables (¢, T, A,
etc.) are stored at the node points and the vector quantities (q and qV) are located at
the cell centers. This is convenient as gradients and divergences can be approximated

using a box scheme. In 2-D for example,

qY). . o~ 3 3
and
¢t+2 3J ¢i—2,j ':¢’)J+';‘ - ¢t,]-—-;—

where for example g}, 1 ; = 1 ( Y1
indices are sxmllarly defined.

In previous 1mplementat10ns of VE, the calculation of the Clebsch varlables re-
quired a computationally expensive search to locate the Lagrangian wake points [12].
In the present 1mplementat10n this search is reduced to a simple mapping by the use

of a regular Cartesm.n gnd Also, the regular Cartesian gnd s1mphﬁes the process of

18




2.3. VORTICITY EMBEDDING REGION

i

i
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!

Figure 2.3: q¥

calculating the Clebsch variables as physical spreading and computational spreading

become synonymous.

2.3.2.7 Two Dimensional Implementation

As part of this investigation, a two dimensional version of Vorticity Embedding was
briefly implemented. Some results from this implementation are presented here to
help illustrate the VE solution process.

Figure 2.3 shows a two dimensional q" field generated by a “lifting point” and
a trailing straight line wake which is analogous to the branch cut in a traditional
potential flow calculation. A line integral of the component of q" perpendicular
to the line of markers taken about the edge of the line of markers will recover the
Circulafion r imposed at the leading edge of wake markers ;3.nd hence on all of the
markers shown. Figure 2.4 is the divergence-free velocity field associated with the q’
distribution in Figufe 2.3 and Figure 2.5 is that velocity plus a constant free-stream

velqcitjr.

19




2.3. VORTICITY EMBEDDING REGION

Figure 2.4: ¢ + V¢
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2.4 Fractional Step Region

The HELIX-III code will be used for calculations in which a ground plane is present. In
the presence of a ground plane, the wake structure becomes complex. Physically, we
see that without a free stream velocity, the rotor wake system expands outward along
the ground in rings of increasing diameter. In the presehce of a free-stream velocity,
the ground vortex forms a horseshoe shape with the ends of the horseshoe pointing
“downstream. The wake near the ground on the free-stream side stops expanding at
some point as the velocity induced by the wake becomes eéual to the free stream
velocity. At this “stagnation point” [6], the wake rolls up into a concentrated ground
vortex. Lagrangian methods (VE included) become cumbersome when a ground plane
enters the computation. Not only aré wall boundary conditions problematic, but a
computationally expensive decision process for combining the wake vortex elements
is necessary. Fortunately, the individual wake identities are not important to the
rotor loads at this distance. It was the efficiency of the VE method for accurately
approximating the effects of these individual wake elements that originally prompted
the use of VE in the region near the rotor. Therefore, a conventional solver is employed

in the region near the ground.

2.4.1 Governing Equations}

In the FS region, we assume that the flow is incompressible and inviscid. The equa-
tions governing the physics of three-dimensional incompressible inviscid flow are the

incompressible Euler equations: the momentum equation,

- Bq=—(a:V)q= VP, )

_.21 :




2.4. FRACTIONAL STEP REGION

where P is pressure divided by the constant density and the continuity equation,
V-q=0. (2.23)

2.4.2 Fractional Step Method

Equations 2.22 and 2.23 (together with appropriate boundary conditions) form a well-
posed set of differential equations [9]; however, the absence of an evolution equation
for the pressure makes constructing a straight forward numerical method difficult.
The fractional step method® (also commonly referred to as a projection method*)
provides a way to evolve a ‘solution to the incompressible Euler equations in time. In
this case, the incompressible three-dimensional Euler equations are broken up into
convection and mass balance equations which are solved sequentially. The overall

procedure is illustrated in Algorithm 3.

2.4.2.1 Staggered Computational Grid

The fractional-step computation is also made on a 128x128x32 staggered grid. The
pressure values are stored at the grid nodes and all of the velocity components are
stored at the cell-centers. A portion of a two dimensional version of this grid is shown

in Figure 2.6 . A similar grid was used in [7] with a similar fractional step method with

3Temam uses this title. Temam proposed the method in 1969. Yanenko applies the title to the
more general class of methods which includes ADI, LOD, etc. [21]

4This title was popularized by Chorin’s justification for the method as a projection method in
the sense that the velocity is projected from the nonsolenoidal intermediate velocity field into a
solenoidal (divergence-free) subspace. [4], [3] This category of projection method is not related
to another category of projection methods which includes Galerkin’s method and the method of
collocation except for their common application to certain partial differential equations. Galerkin’s
method and the method of collocation are called projection methods, because they suppose a solution
exists in an infinite-dimensional function space and project the solutxon onto a ﬁmte—dunensxonal ‘
subspace according t6 basxs functions. 18y P8 179]
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Algorithm: 3 Fractional-Step Method
1. The convection step

(a) Enforce the velocity BC (taking the upper boundary velocity from the
rotor grid)

(b) Calculate the first intermediate velocity, q*
q"=q" - At(q"-V)q" (2.24)
2. The pressure correction step yields g**

(a) Initial BC for P :
P=0 (2.25)

and subsequent BC for P :
P = P.trap (2.26)

except at the ground boundary where the tangency condition is enforced.
This leads to

o°P 1

o= (@ 8). (227)
(b) Calculate P such that :

V2P = Ktv qQ". (2.28)

(c) Then calculate the second intermediate velocity
Q" =q" - AtVP (2.29)
(d) Repeat (a) through (c) until P converges.
3. Apply smoothing to g**, to obtain the final velocity:
G = g™ + V2™

where c is chosen arbitrarily to keep the method stable (currently, ¢ = .01).
The necessity of this smoothing step was found by Dr. Babu and ‘was accepted
unquestlonmgly by the author. :
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% o

—p

Figure 2.6: The fractional-step method staggered grid in two dimensions

the exception that the pressures were located at the cell-centers and the velocities at

the nodes.

2.4.2.2 Convection Step

The time-discrete momentum equation is

gt =q" - Atq" - V)q" - AtV P! (2.30)
or
" = q* — AtVP ’ - (2.31)
where
q =q" - At(q"- V) q™ | (2:32)
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The calculation of q* constitutes the convection step. This calculation is performed
using a first order “image point” method which is attributed to [5]. This method can
be shown to be equivalent to the first order explicit upwind scheme for appropriate
choice of At (see Appendix B for explanation and equivalence with first order explicit

upwind scheme).

2.4.2.3 Pressure Correction Step

Now, to find P™*!, we take the divergence of 2.30:
V- -q"tl =V.q" — AtV2pr! (2.33)

and according to the continuity equation (2.23), V - q**! = 0. Therefore, we are left
with the pressure Poisson equation:

1

2 pn+l __
VP =%

V-q. (2.34)

Equation 2.34 is solved using a routine from FISHPACK. The gradient of the resulting
pressure is then added to the first intermediate velocity, q*, in the pressure correction
step. The resulting velocity, q**, then automatically satisfies the continuity equation

(2.23) as can be seen here:
V-q*=V-q"-At(V-VP)=0. ) (2.35)

Finally, smoothing is added to the second intermediate velocity to obtain the velocity

attimen+1. .
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2.4.3 Boundary Conditions

The appropriate pfessure boundary conditions for the fractional step method is a top-

ic that causes much confusion (at least for the author). This is particularly true for

outflow boundary conditions (see [18] for examples of the variety of BCs employed).

For the outflow boundaries (sides, downstream), we approximate “fully developed

flow”, that is, %‘ — 0 by extrapolating Dirichlet boundary conditions from the inte-

_rior. The inflow boundary conditions (upstream, upper) are simpler. The upstream
boundary is the specified free-stream velocity (or is the same as the sides if there is
no free-stream). The upper boundary velocities are taken from the coincident plane
of the VE region. The lower boundary condition is no flow through (tangency) if a
ground is present and outflow (as described above) otherwise.

The pressure boundary{conditions are also extrapolated from the interior. How-
ever, as no evolution equation exists for the pressure, we are not able to obtain an
interior solution without boundary conditions. Therefore, it is necessary to assume
incorrect- homogeneous Dirichlet boundary conditions in order to obtain an interior
solution. This interior solution is then extrapolated to the boundaries to provide
non-homogeneous Dirichlet boundary conditions. These extrapolated BC are then
presumably less incorrect. This extrapolation to the boundaries is repeated until
sufficiently correct boundary conditions are obtained. The only exception to this pro-

“cedure is in the case where a solution with a ground plane present is desired. In this
case, a Neumann boundary condition is found by taking the dot product of Equation
2.31 and the outward pointing normal yielding

we-mlat-a) eI
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which must be homogenous in order to satisfy the no-flow-through condition.




Chapter 3

'PreViQus Results

One of Dr. Babu’s original (unpublished) results is shown in Figure 3.1 . This result is
for a Sikorsky UH-60A rotor. This is an untapered blade with an aspect ratio, AR, of
15.5. For both cases, the tip Mach number, M, is 0.63. The blade circulation is fixed
from a previous solution using the HELIX-I code, that is, the lifting line procedure
described in section 2.2 was not used. The code that generated the data for these

images represents the starting point for this investigation.
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Chapter 4

Current Results

Two problems can be seen in Figure 3.1. First, there is a lack of velocity near the
/inboard portion of the wake which leads to unacceptable stretching of the wake sheet.
And second, a plot of the divergence reveals mass conservation errors at the interface.
These mass errors can also be seen as unaccounted for. variations in the velocity ‘ﬁeld,
at the interface. As it was also desired to extend the code by the addition of a lifting
line calculation to obtain the circulation to impose on the leading edge of the sheet,
it was necessary to split HELIX-III up into two different codes: a VE-only code for
for extending HELIX-III by adding the lifting line and the original hybrid version to

~ test changes to the code to alleviate the two aforementioned problems.

4.1 Vorticity Embedding-Only Code

Vorticity contours and tip vortex trajectories calculated from the results of a hover
" case run with this VE-only code are shown in Figure 4.1. After the results of the

 lifting line are examined, comparisons will be madé' between the wake geometry shown
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Figure 4.1: Vortex Core Trajectories and Vorticity Contours

B




4.1. VORTICITY EMBEDDING-ONLY CODE

0.2 — T T T T T r/.h= 03—
r/R=0.6 ~=---
0.15 - -
~ 01f ' -
0.05 - 4
0 1 1 | L t 1 !

0 50 100 150 2\(1),0 250 300 350 400

Figure 4.2: Variation of circulation due to Cartesian grid

here and wake geometries obtained from experimental data.

4.1.1 Lifting Line
4.1.1.1 Grid Dependence

The interpolation of w introduces a small grid dependence in the calculated inflow,
w;. Therefore, it was necessary to determine the consistency of this approximation
before assessing the accuracy. To this end, an inflow was calculated at each of two
points and recorded for one revolution. Figure 4.2 illustrates the magnitude of the .
variation at these two points on the lifting line. The inflow calculation varied by less

than 3% at each of the points and, therefore, was judged to be sufficiently consistent.
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Figure 4.3: Caradonna & Tung Rotor Circulation, HELIX-III vs. Data (Calculated
Inflow)

4.1.1.2 Comparison with Caradonna & Tung data

The circulation, I, obtained by the lifting line calculation detailed in section 2.2 was
compared to experimental data from [2]. The results were acceptable for thié partic-
ular rotor (AR=6, untwisted, untapered NACA 0012). The lifting line assumption |
becomes invalid near both the inboard and outboard tips of each blade and there
requires an extrapolation based on the inboard values and the physical requirement
that the circulation goes to zero at both the inboard and outboard tips. Figure 4.3
compares the circulations cé.lculate_d by the lifting line in HELIX-III with those ob-
tained by experiment in [2]. The circulation results obtained compare well even for

this lower aspect ratio blade (6).
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Figure 4.4: UH-60A Circulation, HELIX-I vs. HELIX-III (Fixed Inflow)

4.1.1.3 Comparison with HELIX-I data

Having validated fhe lifting line_: representation of the rotor with the experimental data
' from [2], a lifting line computation was then conducted for the UH-60A rotor. The—
calculated circulation was theh'compared to previously validated results from HELI)?—*
I. The less than éatisfé;ctofy results of this comparison are shown m Figure 4.4. This

“led toa thorough-re-examination and. re-implementation of the lifting line with the -
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4.1. VORTICITY EMBEDDING-ONLY CODE

same less than satisfactory results. This calculation was made without allowing the
circulation actually imposed at the leading edge to vary, that is, the calculation was
made based on an inflow that was created by a wake with the desired circulation.
If the circulation that is imposed at the leading edge was changed according to the
calculated circulation, the circulation distribution “evolves” to that shown in Figure
4.5. The location of the lifting line (one half chord forward of the leading edge of the
wake sheet) was the only parameter in the calculation that was not taken strictly from
theory, and this was taken from standard procedures of panel theory calculations. It
was proposed that the standard procedures of panel methods might not work with
Vorticity Embedding and that the appropriate location of the lifting line might be
other than one half chord in front of the leading edge of the sheet. The location was
iterated over from zero chords to one-and-one-half chords forward from the leading
edge of the wake sheet and up to one-and-a-half chords above the plane of rotation.
The best of these results was still unsatisfactory. Attempting to account for the
contribution of bound vorticity to the effective angle of attack according to Equation
2.2did not significantly improve the results. It was then proposed that the inflow be
averaged azimuthally about the rotor disk at each radial station and this inflow value
be used in the lifting line computation. The slightly more encouraging results from

this further simplification are shown in Figure 4.6.

4.1.2 Comparison of Rotor Plane Computation with Experi-

. mental R_esults

’ The results from the HELIX- ur code have been: compared toa vanety of data obtamed

from expenment In Flgure 4. 7 the radial posmon of the t1p vortex computed by
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Figure 4.5: UH-60A Circulation, HELIX-I vs. HELIX-III (Caléulatégi‘ Inflow)
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Figure 4.6: UH-60A Circulation, HELIX-I vs. HELIX-III
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Figure 4.7: Wake Contraction

HELIX-III is compared with the radial position of the tip vortex measured in the
experiments of [10] and [2]. A two-bladed rotor with an aspect ratio of 6 was used in
both experiments. The low aspect ratio makes the lifting line assumption invalid for
a large section of the blade, but the results still compare well with experiment. For
perspective, the contraction predicted by simple momentum theory is also plotted.
In Figure 4.8 , the vertical position of the tip vortex is plotted for one revolution.

The experimental data was taken from the same sources as above.

4.2 Hybrid Code

In t'he' hybrid code, the interface to the FS region is included; however, the lifting
" line calculation is not attempted. Instead a fixed circulation, I' = I'(r), is taken from
’ 3.-.':=ah0th¢f solution. In this cése, .the-éifculatiop .isvtake_’ri}f_rorr;l_a UH-60A calculation

. petfdrmed with the HELIX-I code. 'I\vo_-modiﬁcatic_)_ri’s w_eré performed on this code.
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Figure 4.8: Wake Geometry

First, the wake was broken up into segments to prévent overwriting in the calculation
of the Clebsch variables. Second, the number of coincident planes between the two

solvers was increased in order to prevent mass errors.

4.2.1 Wake Segmentation

The computational spreading approach to calculating the Clebsch variables involves
iterating over each sheet of wake markers (a 2D structure) rather than the grid nodes
(a 3D structure). This results in a significant savings in time, but leads to complica-~
tions when resolving the wake for multiple revolutions. Wake panels iocated further
down the wake (azimuthally) wrap around and come close to newer wake panels from
" the same sheet. The aforementioned weighted ayefaging (see Section 2.3.2) is no

longer approprlate when the wake panels are not ne1ghbor1ng panels but are stlll part o

' of the same e sheet. This leads to the overwntmg of I and A The effect of the over- - o |
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Figure 4.9: Unsegmented q° Field

writing can be seen as an inappropriate lack of velocity wherever the the sheets are
closely layered over top one another. This necessitates breaking up the wakes of each
of the blades into segments of less than 180°. A q” field generated by an unsegment-
ed Clebsch variable calculation is shown in Figure 4.9. A q field generated by the
Clebsch/q" routines after segmentation is shown in Figure 4.10. Breaking each sheet
up into segments and calculating the Clebsch variables for each segment rather than
each sheet ensures that non-local panels of a single sheet will have an additive effect

. on the q" field rather than inappropriately ca,ncéling each other out according to the
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averaging logic.

An unexpected benefit to this wake segmentation is the ease with which this
will allow for parallelization of the code. The individual contributions of the wake
segments to the overall q” field are independent of each other allowing for simple

parallelization for the case where the number of processbrs is less than or equal to

the number of wake segments.

4.2.2 Optimization of ¢’ calculation

The segmentation of each wake sheet leads to an increase in computational time,
particularly in the calculation of g from the Clebsch variables. In order to keep
computation times reasonable it was necessary to perform some optimization of the
calculation of q¥. The sequence of if-then statements that determined whether grid
points were above or below the sheet or at the edges was reduced to an algebraic
mapping. The actual changes to the code are detailed in Appendix D. These changes
reduced the overall computational time with segmentation by almost 40%. Without

segmentation, the reduction in computational time was around 15%.

4.2.3 Boundary Overlap

For the upper boundary of the FS region, it is necessary to compensate for the small
error introduced by the lower boundary condition in the VE region. An overlap region
is created where at least four planes of the VE region and the F'S region are coincidenf.
The velocity boundary condition for the eonvection step of the FS region is then taken

from a dlstance of ﬁve cells from the lower boundary of the VE regmn The pressure

bounda.ry condxtlon for the upper bounda.ry of the FS region is unaﬁ‘ected by the o
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Figure 4.11: Rotor in Ground Effect. Calculation Made with Segmentation but with-
out Increased Overlap.

interface and proceeds as previously described. This change reduced the maximum
divergence by 21%. Qualitative changes to the velocity field are demonstrated in

Figures 4.11 (without the increased overlap) and 4.12 (with the increased overlap).

4.2.4 Vortex Roll-up

The eventual gda_l for this code is to approximate the flow fields of rotbrs in ground
effect in_ the _'Apnresence; of & cross-wind.- To this end, a calculation was made for a;,-: UH—
60A rotor in g;@und effect with'a cross-wind. The results of a particle trace thrqugh ’
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Figure 4.13: Isolated UH-60 Rotor in Forward Flight

this flow field is shown in Figure 4.13. This clearly shows the expected horseshoe-
shaped ground vortex.
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Chapter 5

Conclusions and Recommendations

Promising results have been obtained for the hybrid version of the HELIX-III code.
'I‘he code was 'compa.red to both experiment and previous computational resultsv. This
demonstrated that the calculated wake geometry is acceptable. The calculated‘ lift
coefficients were acceptable in one case and less than acceptable in the other case.
Qualitatively good results were found for the roll-up of the ground vortex. Finally,
this paper will serve as documentation for a code that otherwise may never have been
documented.

There are a few remaining problems. First and most important, it must be possible
to calculate the correct circulation to impose on the wake markers. The current lifting
lline method is not sufficiently accurate. The cause of this is unknown. An overset
grid about the blade may be a better solution. The overset grid could take adva.utage
of the flow solver already implemented for the FS region or an established solver
could be coupled to the embeddmg region as is the case thh the HELIX-I code. To
h s1mphfy thmgs the could be used only for the calculatlon of cxrculatmn, that is, the E

‘ veloc1t1es calculated in this blade around the solver would only be used to calculate
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the circulation to be imposed at the leading edge of the sheet. Velocity boundary
conditions would be interpolated from the Eulerian grid and appropriate circulations
would be output.

The second remaining problem with the HELIX-III code is speed. This lack of
speed is caused by two things. First, the extrapolation of boundary conditions for
the Poissén equations in both the VE and FS regions. Currently, five iterations of
the Poisson solver are needed to extrapolate values of ¢ and p at the boundaries. In
most fractional step methods, homogeneous Neumann BC are utilized for the pressure
calculation. To use Neumann BC we need the pressure defined at the cell-centers and
the velocity defined at the nodes, because FISHPACK requires the forcing function
(divergence of the previous intermediate velocity) to be supplied at the boundaries
wherever Neumann conditions are imﬁosed. Unfortunately, because of the coupling of
this solver to the VE solver, this will require changes beyond the scope of this work.

Finally, the grid independence of the solutions obtained was never demonstrated.
This was pointed out towards the end of the work and was left out due to time
constraints. However, this is a basic step necessary for the validation of CFD results,
and is, therefore, the next logical step for the complete validation of the previously

obtained results.
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Appendix A

Nomenclature

A.1 Symbols

AR : blade aspect ratio, %
@ : spreading distance
o : angle of attack

¢¢ : sectional lift coefﬁcient

Mz : hover tip Mach number
P : pressure
G : velocity vector

R : rotor tip radius
r : radial location

Sn @ signed distance from grid point to

wake marker
U, v, W ; veloéity components inA_thé: T—y=

and z— directions, respectively -
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Appendix A

Nomenclature

A.1 Symbols

AR

ol

blade aspect ratio, £

: spreading distance

: angle of attack

: sectional lift coefficient
: hover tip Mach number
: pressure

: velocity vector

: rotor tip radius

: radial location

: signed distance from grid point to

wake marker

: velocity components[in_thé’ T—y-

and z— directions, respéétivély '
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w;

T, Y,%2 -

€

<

A2

* or/

: z-component of inflow velocity

Cartesian coordinates .

: bound circulation

- shape function used in VE

. fluid velocity vector, (u,v,w)T
. uniform Cartesian grid spacing
: rotational increment

: spreading function

: collective pitch

. velocity potential

: location of wake node

. angular velocity of rotating blade
: vorticity vector, V X q

: wake age

Superscripts

: intermediate quantity
: free-stream quantity
: Lagrangian node

: time step

: rotor tip quantity

: vortical component
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Appendix B

Image Point Convection

B.1 Equivalence with first upwind difference for ap-
propriate At

The image point method of discretizing the convection equation in the first step of
the fractional step method is -equivalent to the explicit first order upwind scheme for
appropriate At. In one dimension on a uniformly spaced grid, the method proceeds

as follows:

u?.+1 — ;(un, X::mage)

where the interpolation function I is a function of the velocity field at time step n

and the “image” point ™% = z; — Atu? at which u?*! will be calculated. If u; > 0
g i i 4 1

and At is appropriately small such that |Atu?| < Az then I is a function of v ;, u]

-and the image point. .
BPAY R R T
I = - id §— —j‘ i
Az T RGH
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image

where r, = x} -z = ; — Atul — z;) = Az — Atu?! is the distance between

the image point and the grid point to the left of the imagé point. Therefore,

Atu? Az — Atu?
AR ks ) SN M WY,
Uy Az Ui + Az 1
and after some rearranging,
At
ufth = uf - g (U~ Uin)

which is the first order explicit upwind scheme.

B.2 Stability

The image point method is a rare method in that it is both explicit and uncondition-
ally stable. It’s stability is derived from the fact that the image pbini; at which the
velocity is interpolated always lies in the appropriate domain of influence [5]. There-
fore, it can be used for problems where the local CFL exceeds 1.0 whereas the first
order upwind scheme becomes unstable. However, if the local CFL number exceed-
§ 1.0 near a boundary, the appropriate domain of influence (and, hence, the image
point) may lie outside the computaﬁional domain resulting in very interesting bus
errors or segmentation faults. This might be alleviated with “ghost cells” outside‘vof
the computational region, but that point lies 01-1tside of the theoretical domain of this

work.

: 1Not;e that 1f u; < 0'or |Atu"| > Az f,hen “the gnd point- to ‘the left of the i unage pomt” w111 not -
be z;_; and the above formula fOr Tz will not hold
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Appendix C

“FISHPACK: A package of
FORTRAN subprograms for the
solution of separable elliptic partial

differential equations”

The Poisson equations (2.6, 2.34) present in both the VE and FS grids are solved
using the HW3CRT routine from the FISHPACK family of separable élliptic PDE
solvers [20]. HW3CRT solves the standard seven-point finite difference approximation
to the Helmholtz eqﬁatimi1 on a three-dimensional non-staggered Cartesian grid: It is .
a fast dife'ct solver for the discrete equa-tion. The solver first Fourier transforms in the
third dimension then utilizes cyclic reduction to solve a reduced set of equations. A

non-staggered grid is used, becausé the scalar quantities resulting from both Poisson.

1The Poisson equation is a special case of the Helmholtz equation: V2¢ +\¢ = F(z,y,z) where .
A=0Q. - oo sl TP EEERRATE
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equations are then differenced with a box scheme which takes the pressure at the grid
nodes and returns the gradient of the pressure at the cell centers where the velocity

vectors are located.
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q¥ Computation Module

In the q” routine, it is necessary to prevent large fluctuations near the edges. of the
wake sheet. In order to minimize these fluctuations, it is necessary to determine
whether particular grid points lie above, below, or outside the influence of the wake.
It is necessary to have this information for the calculation of the gradient of the shape
function, A, as all of the points involved in this calculation have not necessarily been
assigned a value and will need .to be assigned a value of -.5 or .5 This is accomplished by
examining the values of the array facts(i,j,k) for each of the surréunding points.
This array contains values of -1, 1, or 0 depending on whether the grid point in
question is located “above”, “below”, or outside the influence of the wake. To this end,
the following lines of code were executed at each (Eulerian) grid point for each wake

sheet:

do 141 ii = 1,2
id = ii +i-1

do 140 §j = 1,2
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jd = 3j *3-1

ivv(ii,jj,1) = facts(id,jd,k)

ivv(ii,jj,2) facts(id, jd,k+1)
do 142 kk = 1,2
do 1391 =1,3
if (ivv(ii,jj,kk) .eq.1-2)n1(1)=n1(1)+1
139 continue
142 continue

140 continue

141 continue

For each grid point, n1(1) is the number of node points of the eight node points
surrounding each cell center which are located “above” the wake. n1(2) is the number
of node points outside the influence of the wake and n1(3) is the number “below” the
wake. After the introduction of segmentation, this piece of code was executed at each
grid point for each segment and required a ridiculously large number of operations.

This code was replaced by the following pieces of code:

n1(2)=8-( facts(i,j,k)*facts(i,] )+
facts(i+1,j,k)*facts(i+l,j )+
facts(i+1,j+1,k)*facts (i+1,j+1,k)+

facts(i+1,j+1,k+1)*facts(i+1,j+1,k+1)+

facts(i,j, k+1)xfacts(d,j,k+1)+

&

&

&

& facts(i+1,j,k+1)*facts(i+1,j JkH1)+
&

¥ facts(i,j+l,k+1)*facts(i,jri ke
PR |

" facts(i, 1K) *facts (i, 34LE) )

59




Appendix D

and

n1(3)=( (1+facts(i,j,k))*facts(i,j,k)+
(1+facts(i+1,j,k))*facts(i+l,j,k)+
(1+facts (i+l,j+1,k))*facts(i+l,j+i,k)+
(1+facts (i+1,j+1,k+1))*facts (i+1,j+1,k+1)+
(1+facts(i+1,j,k+1))*facts(i+l,j,k+i)+

(1+facts(i,j,k+1))*facts(i,j,k+1)+

gp & g B & &

(1+facts (i, j+1,k+1))*facts(i,j+1,k+1)+

& (1+facts(i,j+1,k))*xfacts(i,j+1,k) ) / 2

n1(1) is just 8-n1(3) and is no longer calculated. Additionally, n1(3) is only cal-
culated if the point in question is not either completely outside the influence of the

wake or completely inside the influence of the wake (n1(2) is not equal to 0 or 8).
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Vita

Jamie Ryan Kucab was born eight days late on April 9th, 1975.
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